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ABSTRACT

Sea level anomaly extremes impact tropical Pacific Ocean islands, often with too little warning to

mitigate risks. With El Niño, such as the strong 2015/16 event, comes weaker trade winds and mean sea

level drops exceeding 30 cm in the western Pacific that expose shallow-water ecosystems at low tides.

Nearly opposite climate conditions accompany La Niña events, which cause sea level high stands (10–

20 cm) and result in more frequent tide- and storm-related inundations that threaten coastlines. In the past,

these effects have been exacerbated by decadal sea level variability, as well as continuing global sea level

rise. Climate models, which are increasingly better able to simulate past and future evolutions of phe-

nomena responsible for these extremes (i.e., El Niño–Southern Oscillation, Pacific decadal oscillation, and

greenhouse warming), are also able to describe, or even directly simulate, associated sea level fluctuations.

By compiling monthly sea level anomaly predictions from multiple statistical and dynamical (coupled

ocean–atmosphere) models, which are typically skillful out to at least six months in the tropical Pacific,

improved future outlooks are achieved. From this multimodel ensemble comes forecasts that are less

prone to individual model errors and also uncertainty measurements achieved by comparing retrospective

forecasts with the observed sea level. This framework delivers online a new real-time forecasting product

of monthly mean sea level anomalies and will provide to the Pacific island community information that can

be used to reduce impacts associated with sea level extremes.

1. Introduction

Tropical Pacific Ocean islands experience large in-

terannual variations of sea level (Figs. 1a and 2) with

occasionally severe coastal impacts such as prolonged

inundations (high-water stands) or exposures (low-

water stands) over many tidal cycles. Sea level varia-

tions operate across the Pacific and are a well-known

aspect of El Niño–Southern Oscillation (ENSO) (e.g.,

Merrifield et al. 1999; Wyrtki 1984). During past

strong El Niño events (e.g., 1982/83 and 1997/98), sea

levels have been observed to drop by more than 30 cm

around tropical western Pacific islands (Becker et al.

2012) relative to the long-term climatology (Fig. 2),

potentially damaging coral reefs and associated

coastal ecosystems (Widlansky et al. 2014). Con-

versely, during La Niña events, above-normal sea

levels up to 20 cm higher (Chowdhury et al. 2007) in-

crease the risks of damage to infrastructure and sali-

nization of aquifers from coastal inundations caused

by waves or storm surges (Becker et al. 2014), com-

pounding the effects of gradual sea level rise due to

climate change.

Whereas ENSO prediction has matured over the past

several decades (Jin et al. 2008;McPhaden et al. 2015) to

include sophisticated multimodel ensemble forecasts of

upcoming seasons (Barnston et al. 2015), predictions of
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monthly and seasonal sea level variability are limited to

only a few statistical (Chowdhury and Chu 2015;

Chowdhury et al. 2014) or dynamical (McIntosh et al.

2015; Miles et al. 2014) models, which are typically

considered individually. Merging such sea level pre-

dictions into a multimodel monthly sea level anomaly

forecast ensemble should, in principle, yield a more

comprehensive representation of uncertainty (i.e.,

forecasts would be less sensitive to individual model

errors and thus be more accurate).

Besides providing more accurate predictions of

monthly sea level anomalies, an improved seasonal sea

level forecast product should also integrate with

existing sea level outlooks for other time frames (e.g.,

tide predictions or sea level rise projections). For the

tropical Pacific, island communities are particularly

vulnerable to future incremental increases in absolute

sea level and its potential threat to infrastructure

(Keener et al. 2012). These increases are often domi-

nated by global changes (e.g., sea level rise) that are

not yet resolved by seasonal prediction models but

that we can estimate from observations (Church and

White 2011; Merrifield et al. 2012) or future climate

projections (Church et al. 2013). To address more im-

mediate risks, stakeholders also desire a forecast con-

veying more frequent relative changes (i.e., monthly

rising or falling sea levels) caused by climate variability

such as ENSO. Furthermore, astronomical tides—for

which well-established predictions are used widely—

typically exert the largest control on hourly to daily

coastal sea levels in the tropical Pacific, as is common

globally. Clearly, a complete sea level forecast must

incorporate all of these influences on the sea level (i.e.,

long-term trends, monthly variability, and tides) into a

prediction product.

Here we describe a new initiative to produce multi-

model monthly sea level anomaly forecasts out to six

months that can be used to generate coastal sea level

alerts. We use recent advances to better resolve the

observed sea level, required to initialize and verify

statistical models, and to simulate interannual sea level

variability in the tropical Pacific using global climate

models (Landerer et al. 2014; Roberts et al. 2016). Our

forecast ensemble includes three statistical models,

capturing how sea level varies as a function of sea

surface temperature (SST) and two dynamical models

of the coupled ocean–atmosphere climate. To assess

the multimodel performance, we conducted retro-

spective forecasts (1979–2014) of sea level anomalies

around three islands, sampling a wide swath of the

tropical western and central Pacific (Guam, Tarawa,

and American Samoa; labeled in Fig. 1), which were

FIG. 1. Sea surface height variability (cm) as (a)–(c) observed from monthly mean AVISO satellite altimetry and island tide gauges

(shading and numbers, respectively) and simulated by climate-model reanalyses [(d)–(f) CFSR and (g)–(i) PEODAS] on (left) in-

terannual, (center) annual-cycle, and (right) decadal time scales. The first two columns show the standard deviation of anomalies (during

1993–2014) and climatology (1999–2010 average). In the right column, the linear trend (1999–2013) includes decadal variability as well as

long-term global sea level rise, which is not well resolved by the reanalyses. The boxes (28 latitude3 28 longitude) and labels represent the

island averaging regions used throughout the paper.
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validated against tide gauge observations as well as

satellite-derived measurements and model reanalyses

of sea surface height. From January 2015 to the present,

we have tested our forecasting system in a real-time

framework and provided prediction products via the

University of Hawaii Sea Level Center website (http://

uhslc.soest.hawaii.edu/products/slforecasts/). The fol-

lowing is a summary of our forecasting methodology,

which was successful in predicting many aspects of the

sea level response to the development of a strong El

Niño event in 2015.

2. Extreme sea level variability

Sea level variability on interannual time scales is well

captured throughout the tropical Pacific by tide gauges

(e.g.,Merrifield et al. 1999), satellite-measured altimetry

(e.g., Church and White 2011), and dynamical model

FIG. 2. Observed and simulated sea level anomalies with respect to 1999–2010 climatology from AVISO (1993–2014; black), CFSR

(1982–2014; orange), PEODAS (1980–2014; blue), and available tide gauge records (1979–2014; green) around (top) Guam (Apra

Harbor), (middle) Tarawa (Betio), and (bottom) American Samoa (Pago Pago). There is close correspondence between sea level

products except for differing long-term trends (1999–2013; mm yr21, see the colored straight lines) for all stations. Trends are especially

different around American Samoa since the 2009 earthquake (dashed vertical line in the bottom panel). Trend offsets (cm) added to 2015

real-time forecasts are indicated. El Niño and La Niña events referred to in the text are highlighted.
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reanalyses of sea surface height (e.g., Miles et al. 2014).

We compare in Fig. 1 satellite observations since 1993

(AVISO merged absolute dynamic topography) with

simulations used in the assimilation of NOAA’s Climate

Forecast System, version 2 (CFSv2 for the forecast and

CFSR1 for the reanalysis), and the Predictive Ocean

Atmosphere Model for Australia, version 2 [POAMA-2

for the forecast and the POAMAEnsembleOceanData

Assimilation System (PEODAS)2 for the reanalysis].

Other than subtle differences in magnitude, the models

agree with observations in terms of the patterns of in-

terannual and annual cycle variability in the tropical

Pacific. Observations and models reveal the largest in-

terannual variability [Figs. 1a,d,g; standard deviation

(SD). 7 cm] in the tropical western and central Pacific,

affecting numerous island nations. Outside the tropical

Pacific, interannual variability is underrepresented in

the subtropical countercurrent regions of both hemi-

spheres (i.e., offshore of Taiwan and Australia at

;258N–8S) where ocean eddy processes, which are un-

resolved in CFSR and PEODAS, produce large sea level

anomalies (Xu et al. 2014). Variability of the annual

cycle of sea level (Figs. 1b,e,h), which we initially sub-

tract from the observations and our forecasts as it is

typically included in tidal predictions already, is smaller

and mostly constrained to the equator. The largest an-

nual cycle (SD’ 10 cm) is organized in horizontal bands

adjacent the mean location of wind stress convergence

associated with the intertropical convergence zone for

AVISO, CFSR, and PEODAS; however, amplitudes

exceed 5 cm around many islands even away from the

equator (e.g., Guam, located at 148N). Together, the

annual cycle and interannual variability of the Pacific

trade winds associated with ENSO (Timmermann

et al. 2010) explain most of the monthly mean sea level

fluctuations experienced at tropical Pacific islands

(Widlansky et al. 2014).

Apparent from historical observations and simula-

tions (Fig. 2) is the close correspondence between

satellite measurements and model reanalyses (which

do not assimilate data from tide gauges or satellite

altimetry) of regional sea level, centered around island

tide gauges, for the tropical northwestern Pacific

(Guam), equatorial western Pacific (Tarawa), and

tropical south-central Pacific (American Samoa). All

products recorded below-normal sea levels during the

1982/83 and 1997/98 strong El Niño events. For the

later event, interproduct agreement is excellent with

the CFSR and PEODAS reanalyses capturing the

timing of extreme sea level drops, occurring first

around Guam then about six months later around

Tarawa and American Samoa, as detected by each tide

gauge as well as regional satellite measurements.

There are differences among products, however, in

magnitude of the sea level anomalies during the earlier

years when ocean observations were fewer (e.g., 1984–

88 around Guam and American Samoa) and both

strong El Niño events (e.g., CFSR and PEODAS un-

derestimate by 10 cm the sea level drop around

American Samoa during 1983 and 1998 relative to the

island tide gauge). In contrast during 1999–2010, a

period of moremoderate ENSO events as measured by

SST variability in the equatorial eastern Pacific

(NOAA ERSST Niño-3.4 peaked at 1.48C in Decem-

ber 2009 as compared with 2.38C in November 1997),

sea level variability in the reanalyses generally

matched the local tide gauges and regional satellite

measurements. Agreement between tide gauges, sat-

ellite observations, and model reanalyses of the loca-

tion, magnitude, and temporal evolution of sea level

variability gives confidence that dynamical models

could be used to develop new prediction tools to

complement existing statistical forecasts based solely

on tide gauge responses to climate observations

(Chowdhury and Chu 2015).

3. Merging observations and model reanalyses

Even though there is strong agreement between ob-

servations and reanalyses of the timing and amplitude of

sea level variability, the correspondence decays with

time away from the center of the climatology period3

(Fig. 2). Clearly, to achieve a successful multimodel

prediction framework, any differences between sea level

products must be addressed so that forecasts are free of

model-dependent biases.

By model design, there is little agreement on the

long-term sea level trend between tide gauge records

or satellite measurements (which resolve global sea

level rise) and climate model reanalyses (which do not,

for example, include the sea level effects of runoff

from melting land ice or resolve well the observed

1 CFSR (Saha et al. 2010) was initialized from the Global Ocean

Data Assimilation System (GODAS).
2 PEODAS (Yin et al. 2011) was initialized from the 40-yr Eu-

ropean Centre forMedium-RangeWeather Forecasts Re-Analysis

(ERA-40).

3We choose the period 1999–2010 to place predicted sea level

anomalies in a more recent context than if some longer climatology

was used (e.g., 1982–2010). The more recent period also allows

comparisons with the satellite altimetry record. Additionally, the

period 1999–2010 is used by the NCEP Climate Prediction Center

for making seasonal forecasts with CFSv2.
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ocean thermal expansion) around Guam, Tarawa,

American Samoa (Fig. 2), or elsewhere in most of the

tropical Pacific (Figs. 1c,f,i). Averaged over changes

from 1999 to 2013, satellite measurements reveal that

sea levels rose fastest in the tropical northwestern

Pacific (Fig. 1c), which is confirmed by tide gauge re-

cords (Fig. 2). For Guam, the AVISO trend was

5.6mmyr21 (5.9mmyr21, tide gauge), whereas for

Tarawa, the AVISO rise was only 1.3mmyr21

(2.1mmyr21 for tide gauge) and was similarly small for

American Samoa (1.9mmyr21 for AVISO). Influ-

enced by land subsidence since an earthquake in 2009,

the tide gauge trend in American Samoa is much larger

(9.4mmyr21). Strangely, during the 1999–2013 period,

both CFSR and PEODAS simulated mostly negative sea

level trends in the tropical Pacific (Figs. 1f,i), which range

regionally and by model (Fig. 2) from 20.3mmyr21

around Guam (CFSR) to 26.7mmyr21 around Ameri-

can Samoa (PEODAS). Such discrepancies between

observations and the CFSR and PEODAS reanalyses

could perhaps be due to model-inherent temporal drifts

in the subsurface ocean temperature or other unresolved

factors (Miles et al. 2014; Saha et al. 2010).

As there are large sea level trends that vary across

products and times, which introduce drifts in predictions

from the statistical (sensitive to the tide gauge record)

and dynamical (simulation biases) models, we remove

the long-term trend from each model’s prediction

through the following three steps:

1) We calculate the region-specific linear trend for a

period sufficient to capture real or artificial sea level

changes in each product (e.g., for retrospective as

well as 2015 forecasts, trends are calculated from

1999 to 2013).

2) We subtract from retrospective forecasts, for each

time, the linear trend respective of model (i.e., trends

are either tide gauge derived for statistical forecasts or

CFSR–PEODAS derived for dynamical forecasts).

3) We subtract from 2015 predictions the offset be-

tween the December 2013 trend value and zero

(listed in Fig. 2). Likewise, we subtract from retro-

spective forecasts prior to January 1999 the offsets

between the January 1999 trend value and zero.

Thus, our multimodel predictions are with respect to a

uniform climatology period and assume no long-term

trends relative to the 1999–2013 period. With this

method comes the ability to merge dynamical models

with observation-based statistical forecasts, but we note

that underestimates of the pre-1999 tide gauge trend do

occur (e.g., Guam sea level rise during the 1980s is not

completely removed; Fig. 2), which could adversely af-

fect the retrospective forecasts from statistical models

for those years. Going forward, the trend period will be

extended for subsequent forecast years (e.g., 1999–2014

for predictions made during 2016), but there will always

be a separation exceeding one year between the trend

and forecast initialization to avoid potential aliasing

caused by, for instance, the ENSO sea level signal per-

sisting between years.

4. Retrospective forecast skill

Here we describe each of the forecast models, noting

only key aspects of their design and initialization. We

then assess the historical performance and uncertainty

(1979–2014) of our multimodel sea level anomaly pre-

dictions individually and as an ensemble mean, which is

based on equal-weighting averages of the five models.

To verify our forecasts, we average the tide gauge,

satellite altimetry, and two sea level reanalyses to

produce one merged analysis of sea level extending

back to 1979 (Fig. 3, black line), noting that only since

1993 (AVISO satellite altimetry) are all four products

available.4 Thus, the merged sea level analysis

provides a verification that is less sensitive to gaps or

errors from any one observation product.

a. Statistical models

We employ three statistical models derived inde-

pendently from (i) canonical correlation analysis

(CCA), (ii) multivariate linear regression (MLR), and

(iii) artificial neural network (ANN) methods to relate

the tropical Pacific climate variability to monthly mean

tide gauge anomalies. Each model uses NOAA

ERSST, which well captures ENSO variability (Huang

et al. 2015), and ‘‘research quality’’ tide gauge data

from the University of Hawaii Sea Level Center (fast

delivery data are used for the real-time forecasts). The

CCA model (Chowdhury and Chu 2015) establishes

linear relationships between the optimum leading

patterns (maximum five) of SST monthly variability,

identified using empirical orthogonal function (EOF)

analysis of the tropical Pacific (308N–308S, 1008E–
1008W). The MLR (Rencher and Christensen 2012)

and ANN (Billings 2013) models, introduced here for

sea level forecasting, are based on a larger sample of

SST EOFs (10 leading patterns for 408N–408S, 1208E–
708W, which explain over 80% of the total variance).

The ANN is the only statistical model to encapsulate

the nonlinear relationships between SST and tide

gauge records to make the sea level forecasts. Both the

4Gaps in the tide gauge records and start dates of CFSR (1982)

and PEODAS reanalyses (1980) are shown in Fig. 2.
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MLR and ANN models are trained using tide gauge

anomalies with the trend removed, whereas the trend is

initially retained forCCA then removed a posteriori from

that model’s retrospective and real-time forecasts.

b. Dynamical models

We employ output from two global coupled ocean–

atmosphere dynamical models (CFSv2 and POAMA-2)

and their respective ocean data assimilation systems

(CFSR and PEODAS). Both CFSv2 (Saha et al. 2014)

and POAMA-2 (Hudson et al. 2013;McIntosh et al. 2015;

Miles et al. 2014) capture sea level contributions due to

dynamic height, barotropic circulation, advection, and

dissipation processes, using the hydrostatic equations to

calculate changes in the sea surface height for each grid on

the globe. We extract from these global simulations, as

FIG. 3. Retrospective 6-month multimodel sea level forecasts beginning each January (blue), April (green), July (orange), and October

(purple) from 1979 to 2014 around (top) Guam, (middle) Tarawa, and (bottom) American Samoa. The observed time series (black) is an

average of monthly anomalies from available tide gauges, AVISO satellite altimetry, and two reanalyses of sea surface height (CFSR and

PEODAS) with respect to their 1999–2010 climatology. Retrospective ensemble mean forecasts (colored lines) are averages of three

statistical models (CCA, MLR, and ANN) and two dynamical models (CFSv2 and POAMA-2). The corresponding ensemble mean SEE

(61) is shaded. The 3-month lead forecasts for each model are indicated by circles (dynamical) and squares (statistical), colored by start

time. Long-term trends (1999–2013) have been removed from observations and forecasts. The 2009 Samoa earthquake is indicated

(dashed vertical line in bottom panel). El Niño and La Niña events referred to in the text are highlighted above the top panel.
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well as AVISO observations, island-centered regional

averages (28 latitude 3 28 longitude shown in Fig. 1).

POAMA-2, which uses an older version of the ocean

model than CFSv2 [the Modular Ocean Model

(MOM): MOM2 vs MOM4], does not simulate atmo-

spheric pressure effects, unlike CFSv2, which simulates

rising sea surface heights when sea level pressure falls

and vice versa (i.e., the inverse barometer effect), po-

tentially explaining some differences between fore-

casts, especially outside the tropics where large-scale

atmospheric pressure variability is larger. We note that

the following contributions to monthly sea level

anomalies are not simulated by either dynamical

model: changes in ocean mass from ice sheet melt,

tectonic uplift, self-attraction and loading, glacial iso-

static adjustment, land water storage, astronomical

tides, surface waves, or mesoscale eddies. Thus, any

long-term trends in simulated sea level (Figs. 1f,i),

which we remove, must be considered potentially as

errors introduced by artificial model drifts.

To achieve equal weighting for each model, multiple

forecast runs generated by the dynamical model centers

are averaged every month. CFSv2 retrospective fore-

casts consist of four initializations every fifth day (292

runs per year), whereas real-time forecasts are initial-

ized four times daily. From both retrospective and real-

time forecasts, we subtract a smoothed climatology

calculated from the pentad retrospective forecasts, as in

Saha et al. (2014), then average the past 30 days each

month. For POAMA-2, which is run every four days in

retrospective and real time, we use an ensemble of 33

members created from slightly different initial condi-

tions on the last forecast day in a particular month. Thus,

our multimodel forecast contains a trade-off between

CFSv2’s larger ensemble size (120 start times spread

evenly across an entire month) versus POAMA-2’s

smaller ensemble started later in the month, which

would conceivably often yield higher forecast skills, at

least for leads close to the start time (i.e., a 1-month

outlook).

c. Multimodel predictions and uncertainty

We assembled retrospective forecasts (Fig. 3; 1979–

2014), or hindcasts, initialized four times per year

(Decemberyear21, March, June, and September) for

each model and assessed their predictive skill in-

dividually, by category (statistical or dynamical en-

semble averages), and as a multimodel ensemble mean

(Table 1 and Fig. 4) out to six months (January–June,

April–September, July–December, and October–

Marchyear11). Since 1979, the ensemble mean pre-

dicts the extreme sea level drops during strong El Niño
(1982/83 and 1997/98) events as well as many of the

smaller negative and positive anomalies associated

with weaker El Niño (e.g., 2009/10) and La Niña (e.g.,

1988/89) events, respectively. The timing of the largest

sea level changes is also well captured (i.e., extreme

sea level drops are predicted first in the northwestern

Pacific around Guam during boreal fall, followed

about six months later toward the south around Tar-

awa and American Samoa), demonstrating pre-

dictability of the meridional sea level seesaw that is

observed with strong El Niño (Widlansky et al. 2014).

Perhaps most important from a reliability perspective,

there are no false extremes (very high or low sea level

stands not matched in the observations) in the en-

semble mean predictions.

Multimodel averaging typically cancels individual

model errors (Jin et al. 2008), which are often caused by

amplitudes that are too large relative to observations,

even at only 3-month leads (Fig. 3). Whereas forecast

skill generally improves with increasing model sophis-

tication, as indicated by higher anomaly correlation

coefficients (ACCs) and lower root-mean-square errors

(RMSEs) moving from top to bottom in Table 1, skill of

the different ensemble averages (statistical, dynamical,

or both model types) is usually higher than the best-

performing model in the respective ensemble subset.

The advantage of a multimodel ensemble (even with a

small sample size) is apparent by comparing the skill of

CFSv2 and POAMA-2 individually—two dynamical

models that perform similarly well—with that from

when their predictions are averaged together (Table 1).

More often than not, skill of the dynamical ensemble

mean beats the best-performing dynamical model for a

particular region and forecast month (16/24 ACC and

RMSE scores at 3-month lead and 14/24 at 6-month

lead). Including the statistical models yields mixed re-

sults, mostly improving predictions for Guam and Tar-

awa (higherACC, lowerRMSE at 3- and 6-month leads)

but worsening the predictive skill for American Samoa.

Clearly, however, the multimodel ensemble mean

provides a robust prediction of sea level anomalies out

to six months (ACC . 0.7 for 9/12 scores and RMSE ,
6 cm for 11/12 scores) that beats simple climatology or

persistence forecasts for the tropical Pacific island re-

gions that we analyzed (Table 1 and Fig. 4).

Interestingly, performance of the multimodel ensem-

ble mean forecast varies by location as well as season

(Fig. 4). For Guam, the ACC of 6-month forecasts is

higher for July (r 5 0.83) and October (r 5 0.84) start

times than for January (r 5 0.59) and April (r 5 0.72),

which perform worse, likely because of the so-called

spring predictability barrier in forecasting the develop-

ment of El Niño (e.g., Webster 1995) and associated sea

level drops in the tropical northwestern Pacific (e.g.,
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Wyrtki 1984). The 6-month persistence of boreal fall sea

level anomalies around Guam is also much longer than

spring persistence (r 5 0.75 vs r 5 0.30; September and

March persistence, respectively) whereas around Tar-

awa and American Samoa, the seasonal dependence is

reversed (r 5 0.12 and r 5 20.06 for March and Sep-

tember persistence, respectively). Likewise, the spring

predictability barrier is not evident in the Tarawa and

American Samoa sea level forecasts, although July starts

suffer much poorer skills at a 6-month lead (r5 0.40 and

r5 0.30) when compared with those of other start times.

Such a complicated performance of the retrospective

forecasts necessitates defining skill metrics, which are

start-time dependent, to fully describe seasonally vary-

ing uncertainty.

Rather than using the ensemble spread between pre-

dictions from individual models to quantify forecast

uncertainty, which would be limited by our small en-

semble size (five models), we instead follow the meth-

odology in Barnston et al. (2015) to measure the

hindcast correlation skill (corxy, here computed using

the multimodel mean prediction) and relate that to the

TABLE 1. Retrospective forecast skills measured by ACC and RMSE (in parentheses) at 3- and 6-month leads for the three island

regions and four start times. Models are organized by increasing complexity (climatology and persistence forecasts are not included in the

ensemble mean). Bold values indicate skills higher than from the respective persistence forecast.

Skill at 3-month lead:

ACC (RMSE)

Skill at 6-month lead:

ACC (RMSE)

Model Hindcast start Guam Tarawa American Samoa Guam Tarawa American Samoa

Climatology (statistical) Jan — (9.6) — (7.6) — (8.2) — (8.1) — (5.5) — (7.8)

Apr — (8.1) — (5.5) — (7.8) — (8.8) — (7.0) — (5.7)

Jul — (8.8) — (7.0) — (5.7) — (11.3) — (6.4) — (4.6)

Oct — (11.3) — (6.4) — (4.6) — (9.5) — (7.6) — (8.3)

Persistence (statistical) Dec 0.87 (5.0) 0.62 (6.3) 0.46 (7.0) 0.46 (9.2) 0.48 (5.7) 0.33 (6.9)

Mar 0.61 (6.8) 0.79 (4.9) 0.77 (5.3) 0.30 (9.5) 0.73 (5.4) 0.59 (6.4)

Jun 0.63 (6.2) 0.85 (3.6) 0.77 (4.5) 0.47 (9.0) 0.30 (6.5) 0.25 (7.1)

Sep 0.88 (5.0) 0.49 (6.3) 0.56 (4.4) 0.75 (5.7) 0.12 (9.5) 20.06 (9.7)

CCA (statistical) Jan 0.66 (6.4) 0.73 (5.2) 0.73 (5.7) 0.24 (7.4) 0.73 (3.3) 0.56 (6.1)

Apr 0.40 (7.0) 0.78 (3.1) 0.49 (7.0) 0.16 (8.4) 0.60 (5.3) 0.27 (6.5)

Jul 0.51 (6.9) 0.66 (5.0) 0.28 (6.4) 0.56 (8.6) 0.06 (6.3) 20.13 (6.5)
Oct 0.62 (8.4) 0.27 (6.0) 20.04 (6.2) 0.60 (6.9) 0.72 (5.4) 0.64 (6.6)

OLS (statistical) Jan 0.79 (5.4) 0.83 (4.5) 0.79 (5.1) 0.54 (6.5) 0.84 (2.9) 0.71 (4.9)

Apr 0.65 (6.1) 0.77 (3.8) 0.73 (4.7) 0.66 (6.5) 0.71 (4.7) 0.72 (3.7)

Jul 0.79 (4.8) 0.72 (4.6) 0.81 (3.2) 0.78 (6.4) 0.34 (6.1) 0.26 (4.7)
Oct 0.69 (7.4) 0.62 (4.9) 0.51 (4.1) 0.68 (6.2) 0.73 (5.2) 0.71 (5.9)

ANN (statistical) Jan 0.84 (5.3) 0.58 (6.2) 0.58 (7.5) 0.42 (6.6) 0.51 (4.6) 0.40 (7.7)

Apr 0.56 (5.8) 0.84 (2.9) 0.75 (5.9) 0.37 (7.5) 0.79 (4.2) 0.66 (5.0)

Jul 0.69 (5.9) 0.86 (4.0) 0.81 (3.6) 0.52 (8.9) 0.32 (6.2) 0.33 (4.2)
Oct 0.81 (7.6) 0.53 (5.3) 0.48 (3.8) 0.65 (6.7) 0.15 (8.1) 0.20 (8.3)

Ensemble mean

(statistical)

Jan 0.80 (5.0) 0.84 (4.5) 0.79 (5.3) 0.48 (6.0) 0.84 (2.7) 0.64 (5.4)

Apr 0.60 (5.5) 0.88 (2.4) 0.67 (5.2) 0.52 (6.6) 0.78 (4.3) 0.58 (4.5)

Jul 0.73 (5.3) 0.81 (4.2) 0.71 (3.8) 0.71 (7.2) 0.27 (6.0) 0.11 (4.7)
Oct 0.76 (6.7) 0.58 (4.9) 0.35 (4.1) 0.75 (5.7) 0.75 (5.2) 0.70 (6.1)

POAMA-2

(dynamical)

Jan 0.81 (6.5) 0.77 (4.8) 0.88 (4.3) 0.48 (6.9) 0.77 (3.4) 0.83 (4.4)

Apr 0.70 (5.6) 0.90 (2.7) 0.81 (4.5) 0.73 (5.9) 0.84 (4.2) 0.72 (3.7)
Jul 0.86 (5.0) 0.83 (4.0) 0.74 (3.7) 0.78 (8.3) 0.54 (5.3) 0.49 (3.7)

Oct 0.84 (7.4) 0.72 (4.6) 0.56 (3.7) 0.79 (6.7) 0.80 (4.9) 0.77 (5.4)

CFSv2 (dynamical) Jan 0.90 (4.0) 0.80 (4.7) 0.77 (5.2) 0.48 (6.6) 0.69 (3.8) 0.75 (4.9)

Apr 0.69 (5.4) 0.72 (3.5) 0.81 (4.1) 0.62 (7.5) 0.83 (3.7) 0.51 (4.7)
Jul 0.91 (3.9) 0.83 (3.9) 0.78 (3.3) 0.84 (6.4) 0.50 (5.5) 0.40 (4.3)

Oct 0.85 (6.1) 0.61 (4.9) 0.62 (3.2) 0.89 (4.8) 0.70 (5.6) 0.75 (5.5)

Ensemble mean

(dynamical)

Jan 0.91 (4.5) 0.85 (4.1) 0.86 (4.4) 0.61 (6.4) 0.75 (3.5) 0.83 (4.3)

Apr 0.75 (5.1) 0.87 (2.6) 0.86 (3.9) 0.71 (6.3) 0.85 (3.6) 0.72 (3.8)
Jul 0.90 (4.3) 0.87 (3.4) 0.83 (3.1) 0.83 (7.0) 0.56 (5.1) 0.57 (3.5)

Oct 0.85 (6.5) 0.76 (4.0) 0.67 (3.0) 0.87 (5.6) 0.80 (4.9) 0.83 (5.0)

Multimodel

ensemble mean

Jan 0.88 (4.2) 0.88 (4.1) 0.84 (4.7) 0.59 (5.4) 0.86 (2.7) 0.72 (4.9)
Apr 0.76 (4.4) 0.90 (2.2) 0.76 (4.6) 0.72 (5.6) 0.84 (3.8) 0.70 (4.0)

Jul 0.87 (4.2) 0.89 (3.4) 0.78 (3.4) 0.83 (6.4) 0.40 (5.5) 0.30 (4.1)

Oct 0.86 (5.8) 0.69 (4.4) 0.51 (3.6) 0.84 (5.0) 0.85 (4.8) 0.78 (5.5)
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standard deviation of the observations (SDy) for different

lead times. This uncertainty metric, called the standard

error of estimate [SEE 5SDy(12 cor2xy)
1/2], varies by

forecast start time and target month but does not change

from year to year, reflecting a constant underlying signal-

to-noise ratio. In general, the SEE captures the observed

variability (Fig. 3), but there are a few times when sea

level anomalies fall well outside the predicted uncertainty

estimate. The extreme sea level drop around American

Samoa in 1998 (during termination of a strong El Niño
event; Widlansky et al. 2014) and the abrupt rise around

Tarawa during early 2014 (a series of westerly wind bursts

triggered a downwelling equatorial Kelvin wave at this

time, which briefly lowered the thermocline depth, thus

elevating sea surface near the equator; Menkes et al.

2014) are two notable examples when our multimodel

hindcasts underpredicted the anomalies, even for start

times near the event peaks.

5. Real-time forecasts

To illustrate the state of our multimodel sea level

predictions, we discuss an example forecast issued during

July 2015 covering the remainder of that year as El Niño
developed into a strong event (NOAA ERSST Niño-3.4
peaked at 2.48C, the highest ever recorded, in November

2015). Figures 5a–c show, for Guam, Tarawa, and

American Samoa, the ensemble mean and individual

model predictions produced from multimodel initializa-

tions onemonth prior to issuing the forecast (June). From

the skill of the 1979–2014 retrospective forecasts starting

in July (Table 1 and Fig. 4), and specifically their per-

formance during the development of past strong El Niño
events, we would expect a well-performing ensemble

mean forecast at three months’ lead for all regions (ACC

between 0.78 and 0.89; RMSE between 3.4 and 4.2 cm)

and skill extending to six months for Guam (ACC 5
0.83). Much lower performance is expected for Tarawa

and American Samoa (ACC 5 0.40 and 0.30, re-

spectively) that is made worse by the statistical models,

which struggle most at this forecast time for 6-month

leads (Table 1). Such forecast uncertainty is includedwith

the real-time predictions using the SEE metric, which is

especially large for American Samoa at longer leads (low

corxy and high SDy) but smaller for Guam and Tarawa

(orange shading, Fig. 5).

Guam, like the neighboring islands in the tropical

northwestern Pacific (Figs. 5d–f), experienced below-

normal sea levels for all of 2015. Wide expanses of

shallow coastal reefs were exposed during a series of low

tides, especially in October, when the lowest sea level

occurred. In July, we predicted that Guam sea levels

would fall further (Fig. 5a); however, only the CFSv2

FIG. 4. Retrospective forecast skill of the multimodel ensemble

mean measured by ACC for predictions beginning each January

(blue), April (green), July (orange), and October (purple) from

1979 to 2014 around (top) Guam, (middle) Tarawa, and (bottom)

American Samoa. Corresponding persistence forecasts are in-

dicated by dashed lines. For reference, the gray horizontal line

indicates r 5 0.6 (36% variance explained).
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FIG. 5. Multimodel sea level forecasts for July–December 2015 around (a) Guam, (b) Tarawa, and (c) American Samoa. The ensemble

mean forecast (green) is an average of three statistical models (CCA, MLR, and ANN; squares colored yellow, magenta, and dark blue,

respectively) and two dynamical models (CFSv2 and POAMA-2; circles; orange and light blue, respectively). Shading indicates the

corresponding ensemble mean SEE (61). The long-term trend value (red) and seasonal cycle (gray) for each region (calculated from

AVISO satellite altimetry) are indicated. Vertical bars outside the panels indicate the total sea level anomaly (trend1 seasonal cycle 1
monthly anomaly) observed for the initialization month (June; black) and predicted using the 2–4-month forecast average (August–

October; green). The observed time series is shown in solid and dashed black for the pre- and postforecast verification, respectively, and is

an average ofmonthly anomalies from: available tide gauges, AVISO satellite altimetry, and two analyses of sea surface height (CFSR and

PEODAS) with respect to their 1999–2010 climatology. Also shown are observed sea surface height anomalies (AVISO) during

(d) March, (e) June, and (f) September 2015.
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dynamical model captured the extreme drop that

exceeded 225 cm and was below the SEE lower bound.

Sea levels in the equatorial central Pacific around

Tarawa peaked near 115 cm during March 2015

(Figs. 5b,d), which was similar to the rise recorded there

during early 2014 (Fig. 2), before lowering to near nor-

mal by the end of the year (Figs. 5b,f), mirroring the

ocean thermocline changes as Kelvin waves transported

warm water eastward, fueling El Niño. Interestingly, the
statistical models captured the gradual falling sea level,

whereas both the POAMA-2 and CFSv2 dynamical

models kept sea levels too high fromAugust toOctober5

before dropping abruptly in November and December

(5–6-month lead) as El Niño peaked.

Sea level anomalies in the South Pacific, especially

around American Samoa (Fig. 5c), stayed near zero for

all of 2015 in satellite observations (Figs. 5d–f). As all of

our statistical models are trained with historical data and

then, for CCA and ANN, predictions are initialized each

month from real-time tide gauge observations, retro-

spective forecasts for American Samoa (Fig. 3) after 2009

were biased by the postearthquake land subsidence, with

prediction errors becoming worse with further sinking

over time (MLR uses observations only for training as

this model is not initialized from the most recent obser-

vation). Using an estimate of the vertical land motion

(211.8 cm; 2012–15 average difference between regional

satellite altimetry and the Pago Pago tide gauge), we

adjusted the tide gauge datum, successfully removing

most of the postearthquake drift. Rerunning our statis-

tical models for 2015 with this ‘‘unofficial’’ tide gauge

correction yields better agreement with the dynamical

models (Fig. 5c), which are unaffected by the datum

change, and verifies on average with observations for our

July 2015 real-time forecast. After the peak of past strong

El Niño events, the large meridional sea level gradient

between Guam and American Samoa reversed dramati-

cally as sea levels dropped in the south-central Pacific but

returned to normal in the northwest Pacific (Widlansky

et al. 2014). Our forecasts initialized later in 2015 pro-

vided an early warning of such a change during 2016.

From our real-time forecasts (Figs. 5a–c) comes the

best estimate for the next six months of the total sea

level anomaly, which is the sum of (i) the observed long-

term trend, (ii) the seasonal cycle, and (iii) the multi-

model predicted monthly anomalies. Since extreme

total water levels mostly occur on time scales shorter

than a month and are often exacerbated by tidal fluc-

tuations, there is a need to combine the climate-driven

sea level anomalies that we forecast with existing as-

tronomical tide predictions. Stephens et al. (2014) il-

lustrated the potential use of such an early warning sea

level calendar, showing that inclusion of sea level

anomaly forecasts enhances the prediction of tide levels

with a more realistic connection to what actually may

occur. Figure 6 shows the predicted tides for Guam

during October 2015 with or without the total sea level

anomaly that we predicted three months prior (i.e., the

July 2015 forecast; Fig. 5a). Even though there has been

substantial long-term sea level rise around Guam (5 cm,

1999–2013; red bar in Fig. 5a), the predicted below-

normal sea level (218 cm; green line in Fig. 5a) associ-

ated with strong El Niño, combined with low seasonal

sea levels that are typically observed during October

(24 cm; gray line in Fig. 5a) and which are already fac-

tored into the harmonic tidal prediction (Codiga 2011),

would not only lower the monthly mean sea level but

also increase the number of expected extreme low tides

relative to the astronomical prediction alone (one vs six

events lower than the lowest 5% of historical astro-

nomical tides). Adding to the tide prediction, our mul-

timodel total sea level anomaly forecast (long-term

trend plus monthly anomaly), in this example, would

have decreased the residual between observed and

predicted hourly sea levels aroundGuam (215 vs22 cm

monthly average; Fig. 6b), thus providing a more accu-

rate outlook of the potential for coastal reef exposures,

which were widely reported during October 2015.

6. Conclusions and future applications

Clear differences in performance of the statistical and

dynamical models are apparent from the retrospective

forecasts (Fig. 3 and Table 1), although the example real-

time forecasts issued during 2015 (Figs. 5a–c) illustrate

that intermodel differences are not always systematic. As

sea level predictions from additional coupled ocean–

atmosphere models become available (e.g., from the

North American Multimodel Ensemble type experi-

ments; Kirtman et al. 2014), it would be informative to

distinguish the statistical versus dynamical ensemble av-

erage as each model type has different forecast skill,

which varies by location and lead. Thus, increasing the

ensemble size and applying more sophisticated inter-

model weighting techniques are likely ways forward to

improved forecasts, in addition to incremental improvements

of the dynamical models themselves [e.g., POAMA-2’s

successor, ACCESS-Seasonal (ACCESS-S), is sched-

uled to be operational in 2017] that will provide higher

5 The NCEP Climate Prediction Center identified a bug in the

CFSv2 initialization process that developed during 2015—since

fixed—which was found to be causing El Niño to persist too long;

however, it has not been determined how exactly this affected

Pacific sea level forecasts.
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FIG. 6. Hourly sea levels (cm) for Guam during October 2015. (a) Tide predictions (blue) are based on

harmonic analysis of the Apra Harbor sea level recorded during the National Tidal Datum Epoch (NTDE;

1983–2001)with the long-term trend removed. The total sea level prediction (orange) combines the expected

tideswith ourmultimodelmean sea level anomaly prediction (green) and the long-term trend (5 cm; Fig. 5a).

For reference, the highest and lowest 5% of astronomical tides during NTDE are shown (dashed horizontal

lines). Sea levels are with respect to the mean lower low water (MLLW) datum. (b) Residuals between the

observed sea levels and either the tide prediction (blue) or the total sea level prediction (orange).
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horizontal resolutions, which may be especially impor-

tant for predicting sea levels in the subtropical western

Pacific where ocean eddy processes are important as

well as along continental coastlines where nearshore

processes have so far been mostly unresolved.

To improve stakeholder applicability of our sea level

forecasts, we are in the process of (i) expanding the

forecast domain and (ii) applying the sea level anomaly

predictions to assess coastal risks. We describe below

these applications along with remaining technical hur-

dles associated with each:

1) Expanding sea level forecasts to additional coastal

communities. The spatial coverage of our forecasts is

primarily limited by the availability of monthly tide

gauge observations, which are prescribed to the

statistical models and used to cross validate the

dynamical models, although satellite altimetry could

become a surrogate for regions without a nearby tide

gauge. Including Guam, Tarawa, and American

Samoa described here, we are serving onlinemonthly

forecasts for 12 Pacific islands with plans to explore

adding coastal cities on the Pacific coasts of Aus-

tralia, North America, and South America. Before

forecasting for a new region, we must verify each

model’s ability to simulate processes governing

local sea level variability [e.g., river discharges

(Moftakhari et al. 2016) or nearshore Kelvin waves

(Ryan et al. 2005) sometimes dominate sea level

fluctuations along parts of the California coast].

2) Incorporating predicted monthly mean sea level

anomalies into coastal inundation and exposure risk

models. Tide and sea level anomaly predictions (e.g.,

Fig. 6 and Stephens et al. 2014) can provide a practical

early warning tool to assist with management of po-

tential coastal inundation or exposure events. Beyond

using our forecasts to provide a basis for such general

high or low sea level alerts, relating our sea level

forecasts to specific coastal risks will require refer-

encing the total sea level anomalies to local vertical

data. For example, we predicted that below-normal

sea levels aroundGuamwould increase the number of

extreme low tides during October 2015 (Fig. 6), but

without a measure of the height of coastal reefs, there

was no way to quantify how much coral was at risk of

exposure. Height measurement of the built environ-

ment (e.g., roads, building foundations, and piers), as

it relates to sea level anomalies, would likewise

provide a way forward to relate forecasts of high sea

level stands to the extent of coastal flood damage

expected along a particular shoreline.

Extreme ENSO-related sea level variability, which is

projected to become more frequent in the tropical

Pacific with greenhouse warming by the majority of

current-generation climate models (Widlansky et al.

2015), will accelerate the regional risks posed by waves

or storm surges, global sea level rise, and any future land

subsidence. Better predictability of sea level fluctuations

examined in this study will aid Pacific coastal commu-

nities in adapting to not only the impacts of rising sea

levels caused by climate change but also shorter-term

climate events such as 2015/16 El Niño.

Acknowledgments.Weacknowledge ShikikoNakahara

at the University of Hawaii Sea Level Center for pro-

cessing most of the tide gauge data. Special thanks are

given to Paul Davill for providing fast delivery of sea

level data for tide gauge stations managed by the Aus-

tralian Bureau of Meteorology. The altimeter products

were produced by Ssalto/Duacs and distributed byAviso,

with support from Cnes (http://www.aviso.altimetry.fr/

duacs/). NOAA’s CFSR and CFSv2 data were down-

loaded from the IRI/LDEO Climate Data Library. In

addition to regional partners of the ‘‘Integrated Water

Level Service’’ who provided valuable discussions, we

thank the climate modeling groups at the Austra-

lian Bureau ofMeteorology (PEODAS and POAMA-2),

U.S. Pacific ENSO Applications Climate Center (CCA),

and New Zealand National Institute of Water and At-

mospheric Research (MLR and ANN) for producing and

making available their model output.

MJW was supported by the NOAA Climate Program

Office through the University of Hawaii Sea Level

Center (NA11NMF4320128) and by the U.S. Depart-

ment of the Interior through the Pacific Islands Climate

Science Center (G15AP00140). SAS and NF were

supported by National Institute of Water and Atmo-

spheric Research core funded projects CLCP1305 and

CLCP1407.

REFERENCES

Barnston, A. G., M. K. Tippett, H. M. Van den Dool, and D. A.

Unger, 2015: Toward an improved multimodel ENSO pre-

diction. J. Appl. Meteor. Climatol., 54, 1579–1595, doi:10.1175/

JAMC-D-14-0188.1.

Becker, J. M., M. A. Merrifield, and M. Ford, 2014: Water level

effects on breaking wave setup for Pacific island fringing reefs.

J. Geophys. Res. Oceans, 119, 914–932, doi:10.1002/

2013JC009373.

Becker, M., B. Meyssignac, C. Letetrel, W. Llovel, A. Cazenave,

and T. Delcroix, 2012: Sea level variations at tropical Pacific

islands since 1950. Global Planet. Change, 80–81, 85–98,

doi:10.1016/j.gloplacha.2011.09.004.

Billings, S. A., 2013: Nonlinear System Identification: NARMAX

Methods in the Time, Frequency, and Spatio-Temporal Do-

mains. Wiley, 574 pp.

Chowdhury, M. R., and P.-S. Chu, 2015: Sea level forecasts and

early-warning application: Expanding cooperation in the South

APRIL 2017 W IDLANSKY ET AL . 861

http://www.aviso.altimetry.fr/duacs/
http://www.aviso.altimetry.fr/duacs/
http://dx.doi.org/10.1175/JAMC-D-14-0188.1
http://dx.doi.org/10.1175/JAMC-D-14-0188.1
http://dx.doi.org/10.1002/2013JC009373
http://dx.doi.org/10.1002/2013JC009373
http://dx.doi.org/10.1016/j.gloplacha.2011.09.004


Pacific. Bull. Amer. Meteor. Soc., 96, 381–386, doi:10.1175/

BAMS-D-14-00038.1.

——, ——, and T. Schroeder, 2007: ENSO and seasonal sea-level

variability—A diagnostic discussion for the U.S.-affiliated Pa-

cific Islands. Theor. Appl. Climatol., 88, 213–224, doi:10.1007/

s00704-006-0245-5.

——, ——, and C. C. Guard, 2014: An improved sea level fore-

casting scheme for hazards management in the US-affiliated

Pacific Islands. Int. J. Climatol., 34, 2320–2329, doi:10.1002/

joc.3841.

Church, J. A., and N. J. White, 2011: Sea-level rise from the late

19th to the early 21st century. Surv. Geophys., 32, 585–602,

doi:10.1007/s10712-011-9119-1.

——, and Coauthors, 2013: Sea level change.Climate Change 2013:

The Physical Science Basis, T. F. Stocker et al., Eds., Cam-

bridge University Press, 1137–1216.

Codiga, D. L., 2011: Unified tidal analysis and prediction using the

UTide MATLAB functions. University of Rhode Island

Graduate School of Oceanography Tech. Rep. 2011-01, 59 pp.

Huang, B., and Coauthors, 2015: Extended reconstructed sea sur-

face temperature version 4 (ERSST.v4). Part I: Upgrades and

intercomparisons. J. Climate, 28, 911–930, doi:10.1175/

JCLI-D-14-00006.1.

Hudson, D., A. G. Marshall, Y. Yin, O. Alves, and H. H. Hendon,

2013: Improving intraseasonal prediction with a new ensemble

generation strategy. Mon. Wea. Rev., 141, 4429–4449,

doi:10.1175/MWR-D-13-00059.1.

Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction

skill in coupled ocean–atmosphere models. Climate Dyn., 31,

647–664, doi:10.1007/s00382-008-0397-3.

Keener, V. W., J. J. Marra, M. L. Finucane, D. Spooner, and M. H.

Smith, Eds., 2012: Climate change and Pacific islands: In-

dicators and impacts. Pacific Islands Regional Climate As-

sessment Rep., 170 pp.

Kirtman, B. P., and Coauthors, 2014: The North American

Multimodel Ensemble: Phase-1 seasonal-to-interannual

prediction; Phase-2 toward developing intraseasonal pre-

diction. Bull. Amer. Meteor. Soc., 95, 585–601, doi:10.1175/

BAMS-D-12-00050.1.

Landerer, F. W., P. J. Gleckler, and T. Lee, 2014: Evaluation of

CMIP5 dynamic sea surface height multi-model simulations

against satellite observations. Climate Dyn., 43, 1271–1283,

doi:10.1007/s00382-013-1939-x.

McIntosh, P. C., J. A. Church, E. R. Miles, K. Ridgway, and C. M.

Spillman, 2015: Seasonal coastal sea level prediction using a

dynamical model. Geophys. Res. Lett., 42, 6747–6753,

doi:10.1002/2015GL065091.

McPhaden, M. J., A. Timmermann, M. J. Widlansky, M. A.

Balmaseda, and T. N. Stockdale, 2015: The curious case

of the El Niño that never happened: A perspective from

40 years of progress in climate research and forecasting.

Bull. Amer. Meteor. Soc., 96, 1647–1665, doi:10.1175/

BAMS-D-14-00089.1.

Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello,

S. Cravatte, andG. Cambon, 2014: About the role of westerly

wind events in the possible development of an El Niño in

2014. Geophys. Res. Lett., 41, 6476–6483, doi:10.1002/

2014GL061186.

Merrifield, M., B. Kilonsky, and S. Nakahara, 1999: Interannual

sea level changes in the tropical Pacific associated with

ENSO. Geophys. Res. Lett., 26, 3317–3320, doi:10.1029/

1999GL010485.

——, P. R. Thompson, andM. Lander, 2012:Multidecadal sea level

anomalies and trends in the western tropical Pacific.Geophys.

Res. Lett., 39, L13602, doi:10.1029/2012GL052032.

Miles, E. R., C. M. Spillman, J. A. Church, and P. C. McIntosh,

2014: Seasonal prediction of global sea level anomalies using

an ocean–atmosphere dynamical model. Climate Dyn., 43,

2131–2145, doi:10.1007/s00382-013-2039-7.

Moftakhari, H. R., D. A. Jay, and S. A. Talke, 2016: Estimating

river discharge using multiple-tide gauges distributed along a

channel. J. Geophys. Res. Oceans, 121, 2078–2097, doi:10.1002/

2015JC010983.

Rencher, A. C., and W. F. Christensen, 2012: Methods of Multi-

variate Analysis. 3rd ed. Wiley, 800 pp.

Roberts, C. D., D. Calvert, N. Dunstone, L. Hermanson, M. D.

Palmer, and D. Smith, 2016: On the drivers and predictability

of seasonal-to-interannual variations in regional sea level.

J. Climate, 29, 7565–7585, doi:10.1175/JCLI-D-15-0886.1.

Ryan, H., H. Gibbons, J. W. Hendley II, and P. Stauffer, 2005: El

Niño sea-level rise wreaks havoc in California’s San Francisco

Bay region. USGS. [Available online at http://pubs.usgs.gov/

fs/1999/fs175-99/.]

Saha, S., andCoauthors, 2010: TheNCEPClimate Forecast System

Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057,

doi:10.1175/2010BAMS3001.1.

——, and Coauthors, 2014: The NCEP Climate Forecast

System version 2. J. Climate, 27, 2185–2208, doi:10.1175/
JCLI-D-12-00823.1.

Stephens, S. A., R. G. Bell, D. Ramsay, and N. Goodhue, 2014:

High-water alerts from coinciding high astronomical tide and

high mean sea level anomaly in the Pacific Islands region.

J. Atmos. Oceanic Technol., 31, 2829–2843, doi:10.1175/

JTECH-D-14-00027.1.

Timmermann, A., S. McGregor, and F.-F. Jin, 2010: Wind effects

on past and future regional sea level trends in the southern

Indo-Pacific. J. Climate, 23, 4429–4437, doi:10.1175/

2010JCLI3519.1.

Webster, P. J., 1995: The annual cycle and the predictability of the

tropical coupled ocean–atmosphere system. Meteor. Atmos.

Phys., 56, 33–55, doi:10.1007/BF01022520.

Widlansky, M. J., A. Timmermann, S. McGregor, M. F. Stuecker,

and W. Cai, 2014: An interhemispheric tropical sea level

seesaw due to El Niño taimasa. J. Climate, 27, 1070–1081,

doi:10.1175/JCLI-D-13-00276.1.

——, ——, and W. Cai, 2015: Future extreme sea level seesaws

in the tropical Pacific. Sci. Adv., 1, e1500560, doi:10.1126/
sciadv.1500560.

Wyrtki, K., 1984: The slope of sea level along the equator during

the 1982/1983 El Niño. J. Geophys. Res., 89, 10 419–10 424,
doi:10.1029/JC089iC06p10419.

Xu, C., X.-D. Shang, and R. X. Huang, 2014: Horizontal eddy en-

ergy flux in the world oceans diagnosed from altimetry data.

Sci. Rep., 4, 5316, doi:10.1038/srep05316.
Yin, Y., O. Alves, and P. R. Oke, 2011: An ensemble ocean data

assimilation system for seasonal prediction. Mon. Wea. Rev.,

139, 786–808, doi:10.1175/2010MWR3419.1.

862 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56

http://dx.doi.org/10.1175/BAMS-D-14-00038.1
http://dx.doi.org/10.1175/BAMS-D-14-00038.1
http://dx.doi.org/10.1007/s00704-006-0245-5
http://dx.doi.org/10.1007/s00704-006-0245-5
http://dx.doi.org/10.1002/joc.3841
http://dx.doi.org/10.1002/joc.3841
http://dx.doi.org/10.1007/s10712-011-9119-1
http://dx.doi.org/10.1175/JCLI-D-14-00006.1
http://dx.doi.org/10.1175/JCLI-D-14-00006.1
http://dx.doi.org/10.1175/MWR-D-13-00059.1
http://dx.doi.org/10.1007/s00382-008-0397-3
http://dx.doi.org/10.1175/BAMS-D-12-00050.1
http://dx.doi.org/10.1175/BAMS-D-12-00050.1
http://dx.doi.org/10.1007/s00382-013-1939-x
http://dx.doi.org/10.1002/2015GL065091
http://dx.doi.org/10.1175/BAMS-D-14-00089.1
http://dx.doi.org/10.1175/BAMS-D-14-00089.1
http://dx.doi.org/10.1002/2014GL061186
http://dx.doi.org/10.1002/2014GL061186
http://dx.doi.org/10.1029/1999GL010485
http://dx.doi.org/10.1029/1999GL010485
http://dx.doi.org/10.1029/2012GL052032
http://dx.doi.org/10.1007/s00382-013-2039-7
http://dx.doi.org/10.1002/2015JC010983
http://dx.doi.org/10.1002/2015JC010983
http://dx.doi.org/10.1175/JCLI-D-15-0886.1
http://pubs.usgs.gov/fs/1999/fs175-99/
http://pubs.usgs.gov/fs/1999/fs175-99/
http://dx.doi.org/10.1175/2010BAMS3001.1
http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.1175/JTECH-D-14-00027.1
http://dx.doi.org/10.1175/JTECH-D-14-00027.1
http://dx.doi.org/10.1175/2010JCLI3519.1
http://dx.doi.org/10.1175/2010JCLI3519.1
http://dx.doi.org/10.1007/BF01022520
http://dx.doi.org/10.1175/JCLI-D-13-00276.1
http://dx.doi.org/10.1126/sciadv.1500560
http://dx.doi.org/10.1126/sciadv.1500560
http://dx.doi.org/10.1029/JC089iC06p10419
http://dx.doi.org/10.1038/srep05316
http://dx.doi.org/10.1175/2010MWR3419.1

